Quinone reductase acts as a redox switch of the 20S yeast proteasome.
نویسندگان
چکیده
The proteasome has an essential function in the intracellular degradation of protein in eukaryotic cells. We found that the dimeric quinone reductase Lot6 uses the flavin mononucleotide (FMN)-binding site to bind to the 20S proteasome with a 1:2 stoichiometry-that is, one 20S proteasome molecule can associate with two quinone reductases. Furthermore, reduction of the FMN cofactor by either NADH or light irradiation results in the binding of the b-Zip transcription factor Yap4 to the Lot6-proteasome complex, indicating that recruitment of the transcription factor depends on the redox state of the quinone reductase. Here, we show that binding of Yap4 to the complex not only protects it from ubiquitin-independent proteasomal degradation, but also regulates its cellular localization. In non-stressed wild-type cells, we did not detect any Yap4 in the nucleus, whereas Yap4 was present in the nuclei from quinone-stressed yeast cultures. Thus, the Lot6-proteasome complex can be regarded as a redox switch in which the quinone reductase acts as a sensor for oxidative stress.
منابع مشابه
20S proteasome activity is modified via S-glutathionylation based on intracellular redox status of the yeast Saccharomyces cerevisiae: implications for the degradation of oxidized proteins.
Protein S-glutathionylation is a post-translational modification that controls many cellular pathways. Recently, we demonstrated that the α5-subunit of the 20S proteasome is S-glutathionylated in yeast cells grown to the stationary phase in rich medium containing glucose, stimulating 20S core gate opening and increasing the degradation of oxidized proteins. In the present study, we evaluated th...
متن کاملFunctions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch
NQO1 is one of the two major quinone reductases in mammalian systems. It is highly inducible and plays multiple roles in cellular adaptation to stress. A prevalent polymorphic form of NQO1 results in an absence of NQO1 protein and activity so it is important to elucidate the specific cellular functions of NQO1. Established roles of NQO1 include its ability to prevent certain quinones from one e...
متن کاملRedox regulation of the proteasome via S-glutathionylation☆
The proteasome is a multimeric and multicatalytic intracellular protease responsible for the degradation of proteins involved in cell cycle control, various signaling processes, antigen presentation, and control of protein synthesis. The central catalytic complex of the proteasome is called the 20S core particle. The majority of these are flanked on one or both sides by regulatory units. Most c...
متن کاملChloroquine binding reveals flavin redox switch function of quinone reductase 2.
Quinone reductase 2 (NQO2) is an FAD-linked enzyme and the only known human target of two antimalarial drugs, primaquine (PQ) and chloroquine (CQ). The structural differences between oxidized and reduced NQO2 and the structural basis for inhibition by PQ and CQ were investigated by x-ray crystallography. Structures of oxidized NQO2 in complex with PQ and CQ were solved at 1.4 Å resolution. CQ b...
متن کاملAnalysis of bortezomib inhibitor docked within the catalytic subunits of the Plasmodium falciparum 20S proteasome
The three-dimensional fold of Plasmodium falciparum (Pf) 20S proteasome is similar to yeast Saccharomyces cerevisiae 20S proteasome. The twenty eight subunits complex corresponding to two copies of seven distinct α and seven distinct β subunits shares >35% sequence identity with equivalent subunits of the yeast 20S proteasome. Bortezomib (Velcade®) - a known inhibitor of the three catalytic sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2009